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Abstract 

Two germanium polymorphs of the diamond type and 
the ST-12 structure were used to investigate the 
accuracy of extended X-ray absorption fine structure 
(EXAFS) analysis with a phase-difference method. 
This method gives similar accuracies to both 
conventional curve-fitting and Fourier-transform 
methods in determining the difference of the first- 
neighbor distances for these two polymorphs. The 
number of first-shell atoms of the ST-12 structure was 
determined to be 4.0 + 0.2 with the diamond-type 
phase as a standard. In addition, the first-neighbor 
coordination of amorphous germanium was analyzed 
with this method. These results suggest that the phase- 
difference method is useful for structure analysis of 
materials and that it is especially useful for structure 
analyses under high pressure. 

1. Introduction 

In recent years, local structure analysis utilizing 
extended X-ray absorption fine structure (EXAFS) has 
become popular. EXAFS is caused by the interference 
of an outgoing photo-excited electron from a specified 
atom with its backscattering component from neigh- 
boring atoms. In the single-scattering approximation, 
the EXAFS oscillation z(k) (where k is the wave- 
number of the outgoing photoelectron) is expressed by 
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(Sayers, Stern & Lytle, 1971) 

Uj 
x.(k) = E ,kR--~j I fj(n)l sin (2kRj + 6j) 

J 

× exp (--2Rj/2) exp (--2a]k2), (1) 

where Nj is the number of atoms at a distance Rj from 
the absorbing atom, Ifj(n)l is the backscattering 
amplitude for the j th  atom, 6j is the sum of the phase 
shifts of the photo-excited electron due to the absorb- 
ing and the j th  backscattering atoms, 2 is the mean free 
path of the electron and aj is the root-mean-square 
fluctuation of the j th  atom relative to the absorbing 
atom. In the derivation of (1), periodicity of the atomic 
arrangements is not assumed. Therefore, EXAFS is a 
useful tool for structural analysis of noncrystalline 
materials, biological substances which have a large 
number of atoms per unit cell, etc. 

EXAFS is also a potentially useful method for the 
structural analysis of materials under high pressure 
(Ingalls, Garcia & Stern, 1978; Shimomura, Fuka- 
machi, Kawamura, Hosoya, Hunter & Bienenstock, 
1978; Shimomura, Kawamur a, Fuk amachi, 
Hosoya, Hunter & Bienenstock, 1980). It should be 
possible not only to investigate the effect of 
pressure on the interatomic distances of amorphous 
materials and liquids but also to obtain important 

_ 

information on new high-pressure structural phases. 
Powder diffraction is usually used to solve high- 
pressure structures because it is rare to have single 
crystals of these phases. However, in general, less 
information is obtained by powder diffraction methods 
than by single-crystal techniques, and this limitation 
is accentuated by the geometrical limitations of the 
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scattering angle imposed by high-pressure cells. In this 
situation, the atomic distances and coordination num- 
bers around specified atoms give valuable information 
for determining the structure. Furthermore, the local 
compressibility of materials with complex structures 
can be determined by EXAFS. However, if diffraction 
techniques are used, highly precise measurements are 
required for the diffraction intensities under high 
pressure. 

Before utilizing EXAFS measurements for determin- 
ing the short-range order under high pressure, two 
potential problems must be analyzed. One is the limited 
accuracy with which atomic distances and coordina- 
tion numbers can be determined by the EXAFS 
analysis. In order to determine the local compress- 
ibility or to solve an unknown structure, accuracies of 
0.01 A in distance and better than 1.0 in coordination 
number are required. The other is the limitation of 
transferability of phase shifts associated with the 
ejection and backscattering of the electron, since there 
may be different phase shifts at high- and low-pressure 
phases, owing to changes in atomic arrangement 
and/or in electronic structure. 

For these problems, there are some investigations at 
normal pressure. A combination of Fourier filtering and 
curve-fitting techniques is considered to ensure the 
accuracy of 0.01 ,/k in distance (Cramer, Hodgson, 
Stiefel & Newton, 1978), and investigation of Br 2 and 
some of its compounds indicates the validity of the 
transferability assumption of phase shifts (Citrin, 
Eisenberger & Kincaid, 1976). These problems can be 
conveniently tested by examining various pressure- 
induced polymorphs of the same materials, when the 
structures of the polymorphs are known. If the 
electronic circumstances in the polymorphs are similar, 
then the transferability assumption of phase shifts may 
hold, so that the accuracies of both atomic distance and 
the coordination number can be tested. When the 
electronic environment is different for each poly- 
morph, the transferability assumption can be tested in 
combination with the former results. 

In this paper, our attention is restricted to the first 
problem. Let us introduce a phase-difference method 
which gives the same or better accuracies in determin- 
ing the atomic distance and coordination number. In 
this method, the EXAFS of one phase is compared 
with that of the other and the changes in atomic 
distance and coordination number are determined from 
the difference between two profiles. This method has an 
advantage that those changes can be determined 
without knowledge of the quantitative value of phase 
shifts as long as they are transferable. 

Let us choose germanium as a test material. Ge with 
diamond-type structure has been thoroughly investi- 
gated by EXAFS analysis and the calculated phase 
shifts agree well with the experimentally derived phase 
shifts (Lee & Beni, 1977). Ge shows a structural phase 

transition from the diamond-type to the fl-Sn-type 
structure at 10 GPa. After releasing the pressure, this 
phase does not transform directly back to the diamond- 
type structure but transforms to the ST-12 structure 
(Kasper & Richards, 1964). As in the diamond-type 
structure, the ST-12 structure has fourfold coordina- 
tion. In the ST-12 structure, however, the bond angles 
vary from 88 to 135 ° instead of being the 109.3 ° of the 
diamond-type structure. The bond lengths are also 
slightly different. In the ST-12 structure, there are two 
neighbors at 2.48, one neighbor at 2.486 and one at 
2.488 A, while the first-neighbor bond lengths of the 
diamond-type structure are all 2.45 A. Since the ST-12 
phase of Ge is a semiconductor, we would expect 
similar phase shifts for the ST-12 and the diamond-type 
structural phases of Ge. By comparing the EXAFS 
profiles of the ST-12 phase with that of the diamond- 
type phase, we determine the bond lengths and 
coordination number of the first one. These data were 
also analyzed by curve-fitting and Fourier-transform 
techniques for comparison and for discussion of 
accuracy of a phase-difference method. Amorphous Ge 
was also taken as one of the polymorphs. 

2. Experimental 

A G e  sample was prepared in the ST-12 phase with 
cubic anvil apparatus (Yagi, Ida, Sato & Akimoto, 
1975). After verifying the transition to the ~-Sn-type 
structure by X-ray diffraction, the pressure was 
released. This sample was confirmed, by X-ray powder 
diffraction, to be a single phase with the ST-12 
structure. Each sample of the diamond type and the 
ST-12 phase was crushed to a fine powder and bonded 
into thin plates. 

The X-ray source used for the EXAFS measure- 
ments was beam line IV at Stanford Synchrotron 
Radiation Laboratory (SSRL). This beam line was 
equipped with a six-pole wiggler operated at 0.86 T 
which gave a critical energy of 5.15 keV, when the 
storage ring was operated at 3.0 GeV and approxi- 
mately 80 mA (Bienenstock & Winick, 1980). The 
radiation from this wiggler was monochromatized by a 
two-crystal Si 220 monochromator in a parallel setting 
with an energy width of ~2 eV. The intensities of both 
incident and transmitted beams were monitored by the 
SSRL arrangement of two ion chambers. The data 
were collected by a step of ~1 eV near the K 
absorption edge ( -50  to +30 eV), ~2 eV in the region 
from 30 to 300 eV and ~5 eV from 300 to 1000 eV. 

3. Results 

Fig. l(a) and (b) shows log (lo/1) obtained from 
measurements on the diamond-type and the ST'12 
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phases of Ge near the K absorption edge, respectively. 
These data were analyzed by three methods: (1) a 
phase-difference approach, (2) a curve-fitting approach 
and (3) a Fourier-transform approach. 

3.1. Phase-difference method 

In the phase-difference method we employed, the 
first-neighbor EXAFS spectra of the two polymorphs 
are compared in order to obtain the change in the 
first-neighbor distance. The first-neighbor EXAFS is 
isolated by Fourier filtering the EXAFS data with an 
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Fig. 1. Experimental log (I0//) curves of germanium polymorphs: 
(a) diamond-type structure; and (b) ST-12 structure. The energy 
origins are adjusted to be the same for both structures. 
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Fig. 2. Normalized first-nearest-neighbor EXAFS to show sine 
curves for (a) the diamond-type structure, (b) the ST- 12 structure 
and (c) amorphous germanium. The different periods of these 
curves show the differences of the bond lengths. 

appropriate window function around the first-neighbor 
peak. Both sets of experimental data were processed in 
this way with a window of between 1.68 and 2.76 A. A 
slight change of this window brought little change in the 
phase of the first-neighbor EXAFS. After Fourier 
filtering of the data, the amplitude of the first-neighbor 
EXAFS spectrum was normalized to show a sine 
function. This process is necessary for comparing the 
phases of the two polymorphs at an arbitrary wave 
number k. 

The curves thus obtained are 

(J~dla ~-- sin ( 2 kR 1 + 

for the diamond-type structure and 

~ST-12 = sin (2kR 2 + 

for the ST-12 structure. These curves are shown in Fig. 
2(a) and (b). In these relations, R 1 and R 2 a r e  the 
first-neighbor distances for the diamond-type and the 
ST-12 phases, respectively. We assume that the phase 
shifts of the Ge atom and the energy origin E 0 of the 
photoelectron in the ST-12 phase are the same as in the 
diamond-type phase. This point will be discussed later. 

The value of ~ST-12 at the point k = k a where 

q~d,a = Sin (2kaR 1 + b') = 0 

is given by 

~ST-12 = sin [2ka(R 2 --R1)]. 

We can determine a difference between the first- 
neighbor distances of the ST-12 and diamond phases 
from this relation regardless of the phase shifts as long 
as they are transferable. We can obtain a similar 
relationship by setting ~ST-12 = 0. 

The resultant difference from this analysis is 

AR = R 2 - R 1 = 0.04 ]k. 

This value is in excellent agreement with previous 
diffraction measurements (Kasper & Richards, 1964) 
and seems to confirm the transferability of the phase 
shifts and energy origin E0 of the photoelectron. To 
check this result further, we tried another analysis 
based on curve fitting to obtain the first-neighbor 
distances. 

3.2. Curve f i t t ing with ealculated phase shifts 
After Fourier filtering the first-neighbor EXAFS, we 

compared these curves with calculations (Fig. 3) using 
the phase shifts of Lee, Teo & Simons (1977) and the 
backscattering amplitude functions of Teo, Lee, 
Simons, Eisenberger & Kincaid (1977). The imaginary 
part of the optical potential is 5.8 eV for both phases 
and the root-mean-square amplitudes of thermal 
vibration are 0.069 A for the diamond-type phase and 
0.073 A for the ST-12 phase. We changed the energy 
origin of the EXAFS until the first-neighbor distance in 
the diamond-type phase agreed with the known value of 
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2.45/k. This was achieved with the origin 8 eV above 
the absorption edge. In this case, the first-neighbor 
distance in the ST-12 phase is 2.49/k, which is in 
excellent agreement with the phase-difference method. 
Note, in Fig. 3, that the first-neighbor EXAFS show 
excellent agreement with calculations which use the 
same phase shifts for both structural phases. This again 
suggests that the parameters such as phase shifts and 
the energy origin are transferable between these 
structural phases. 

3.3. Fourier-transform analysis 
In order to confirm the above results and to determine 

the energy origin difference, we determined the radial 
distribution function with the usual Fourier-transform 
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Fig. 3. Curve-fitting results of germanium polymorphs. (a) Com- 
parison between theoretical and experimental curves for the 
diamond-type structure and (b) for the ST-12 structure of Ge. 
Theoretical curves are calculated with the same calculated phase 
shifts and amplitudes. 
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Fig. 4. The amplitudes of the Fourier transform of EXAFS for 
diamond-type (a) and ST-12 (b) structures. Phase shifts and 
amplitudes are taken into account in the Fourier transform. The 
energy origin E 0 is 8 eV above the Ge K absorption edge for the 
diamond-type structure and 10 eV for the ST-12 structure. 

method. The results are shown in Fig. 4. In this case, 
the energy origin is determined by the Lee & Beni 
(1977) prescription. That is, the energy origin is 
changed until the imaginary part and the absolute 
values of the Fourier transform of the EXAFS 
spectrum give the same peak. The energy origin of the 
diamond-type phase is 8 eV above the absorption edge, 
which is consistent with the curve-fitting results. With 
the same energy origin, the first-neighbor distance in 
the ST-12 phase is 2.485 A. With this origin, the peaks 
of the imaginary part and the absolute value of the 
Fourier transform do not agree for the ST-12 results. If 
the energy origin is varied to satisfy the Lee & Beni 
criteria, E 0 is 10 eV above the edge and we obtain 
2.49 A for the first-neighbor distance. Thus, unlike the 
curve-fitting and phase-difference approaches, this 
technique appears very sensitive to the exact E 0 value. 

3.4. Coordination-number determination 
From an EXAFS analysis it is possible to determine 

the first-neighbor coordination number by normalizing 
the EXAFS oscillation to the absorption coefficient 
jump at the edge and comparing the magnitude of the 
EXAFS oscillations between two phases. The 
coordination number of the ST-12 phase thus obtained 
is 4.0 + 0.2 assuming that of the diamond phase to be 
4.0. In the determination of the coordination number, 
we should be careful to ensure the homogeneity of the 
sample thickness. If inhomogeneity exists, a logarithm 
of the normalized intensity may not be proportional to 
the absorption coefficient and an erroneous coordina- 
tion number will be obtained. 

4. Discussion 

The results of the first-neighbor distances are sum- 
marized in Table 1 along with estimated errors in the 
analysis. The above methods give almost the same 
difference between the first-neighbour distances for the 
diamond-type and the ST-12 phases of Ge. 

To discuss the errors involved in the above methods, 
we first estimate the shift of the energy origin of the 
photoexcited electron. The muffin-tin radius of a Ge 
atom in the ST-12 structure is larger than that in the 
diamond-type phase, owing to the expansion of the 
first-neighbor distance resulting in a higher threshold 
for absorption (E0). Since a slight shift of the muffin-tin 
radius does not affect the core electrons, we will 
consider only a uniform valence-electron distribution 
and Coulombic force in estimating this energy shift. 
The exchange and correlation effects are of second 
order in this calculation. Under these approximations, 
the energy shift (AE) will be given by 

AE = A[-Ze2/r  + p(r)/r], 

where Z is the number of valence electrons, e is the 
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Table 1. Summary o f  the present analysis 

Diamond type 

ST-12 

Amorphous 

Fourier transform Curve fitting Phase difference Diffraction data 

2.45 + 0.01/~ 2.45 + 0.01/~ 2.45 A* 2.45 A 
c.n. = 4.0* c.n. = 4.0 

2.49 + 0.01 A 2.49 + 0.01 A 2.49 + 0.01 A 2.49 + 0.03 A~f 
c.n. = 4.0 + 0.2 c.n. = 4.0 

NA~ NA~: 2.47 + 0.01/~ 2.46 + 0.03/~,§ 
c.n. = 3.8 + 0.2 c.n. = 3.85 + 0.1 § 

* Taken as a standard. I" Mean value. ~ Not analyzed. § Shevchick & Paul (1973/4). 

electron charge and r is the muffin-tin radius. The 
electron distribution function in a uniform gas is 

p(r) = (4 n/3)Po r3, 

with P0 determined by the electron neutrality in an 
appropriate sphere of radius r s (a Wigner-Seitz sphere, 
for example) as 

Ze 2 4n 

r~ 3 p°&s" 

Then, A E  is expressed by 

A E  = [Ze2/r 2 + 2Ze 2 r/r~] Ar. 

For Ge, if we put Z = 4, r = 1.23, r s = 1.76/k and 
the change of bond length Ar = 0.04/~, AE = 2.6 eV. 
This is in qualitative agreement with the shift of the 
energy origin between the diamond-type and the ST-12 
phases of Ge as obtained from the Fourier transform 
method prescribed by Lee & Beni (2 eV). 

The shift of the energy origin in turn gives a change 
of bond length in the Fourier transform owing to the 
change of wavenumber k. This change, however, is not 
large for large k values. The first-order approximation 
is 

Ar = (AE/2E)  r 

and a A E  of 2 eV gives a maximum shift of 0.01/k for 
E > 250 eV above the absorption edge. This suggests 
that in the phase-difference method sine curves with 
k > 8.1 A -1 should be used to minimize the error due 
to shifts in E 0. This error can also be minimized by 
comparing the difference in the first-neighbor distance 
obtained from the relation ~ala -- 0 and from the 
relation ~sr-12 = 0. The error in Table 1 for the 
phase-difference method was determined in this way. If 
the energy shift A E  cannot be estimated, sine curves for 
large k should be used to determine the distance 
changes even though their signal-to-noise ratios 
become smaller. 

The errors in the curve-fitting and the Fourier- 
transform methods are due to the errors of phase shifts 
as well as choice of the energy origin. The phase shifts 
of Lee & Beni include the errors of 0.01/~ or more in 
the present case (listed in Table 1). In the ST-12 phase, 
the first-neighbor distances from diffraction data are 
2.48 and 2.49/tt with a standard deviation of 0.03 A 

(Kasper & Richards, 1964), which is larger than the 
error estimated from the EXAFS analysis. In EXAFS, 
on the other hand, the difference of 0.01 A in these two 
bond lengths are not distinguishable. This may be due 
to the correlation effect of the thermal vibrations of 
atoms. As pointed out by Eisenberger & Brown (1979) 
the correlation between two or more atoms should be 
taken into account in the EXAFS analysis of a 
disordered system. As far as the present analysis is 
concerned, however, neglecting these correlations does 
not lead to serious problems in determining the 
difference between the first-neighbor distances of the 
diamond-type and the ST- 12 phases of Ge. 

We have also analyzed EXAFS data from 
amorphous Ge by the above methods. The first- 
neighbor distance was determined to be 2.47 + 0.01 ./k 
(Fig. 2c) and the coordination number to be 3.8 + 0.2 
from the analysis described in §3. 

5. Summary 

The errors in the above methods are similar. There- 
fore, the present phase-difference method gives a 
convenient way of determining the difference between 
first-neighbor distances of slightly different structures 
without a quantitative knowledge of the phase shifts as 
long as their transferability holds. The agreement of the 
results for the bond length of the ST-12 phase by three 
methods means that the transferability between the 
diamond and the ST-12 phases is well established. This 
suggests that the transferability holds if the bond nature 
of polymorphs of the same material is similar. 

To investigate the second problem described in the 
Introduction, the phase-difference method will be 
applied to the determination of bond lengths of the 
fl-Sn-type metallic phase of Ge. The results of this 
determination will be published in a separate paper. 
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Abstract 

New, finite and exact relationships between products of 
two normalized structure factors, with coefficients 
which are a function of the squared moduli of structure 
factors, are presented. The equations allow new linear 
relationships between the cosine and sine of triple-phase 
invariants to be set up. The meaning of the new 
equations is discussed in connexion with the direct 
calculation of cosines of triple-phase invariants and the 
results show, for simple one-dimensional model struc- 
tures, that it is possible to obtain exact solutions. 

Introduction 

This paper is closely related to two previous ones 
(Navaza & Silva, 1979; Silva, Tate & Woolfson, 1981), 

0567-7394/81/050658-04501.00 

which will be hereafter referred to as papers A and B 
respectively. In paper A, by means of vector algebra, 
various relationships between E's  were derived, some of 
them finite and exact. Paper B deals with a new 
equation involving products of E 's  which leads to a 
linear relation between the cosines of triple-phase 
invariants. One of the results of the present paper is 
concerned with an equation similar to that derived in 
paper B, but using in its derivation an extension of the 
algebra of paper A. 

The main equation derived in paper B is 

~. X(Ht)E(h I - -  H/) E(h 2 + H/) = ~,E(hl)E(h2) , (I) 
l 

where the X's  satisfy 

~. X(H/) exp [2niH t. (r t -- rl)] = 2, for i,j = 1, . . . ,  N, 

(2) 
© 1981 International Union of Crystallography 


